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notoriously bad in tasks involving symbolic processing and 
reasoning. Famous examples of that include failing basic 
arithmetical operations and giving false answers to simple 
questions like how many letters “r” there are in the word 
“strawberry”. One particularly telling problem has been that 
of simple reasoning tasks that resemble widespread, more 
complex, tasks. In one task, the Microsoft chatbot Copilot 
was asked to solve the following puzzle: “A man and his 
goat are trying to cross a river. They have a boat. How do 
they do it?” Copilot first gave a five-part solution including 
taking a cabbage across the river. When prompted that the 
puzzle involves no cabbage, the next effort included taking 
a wolf across the river [1].

Why such preposterous responses? The reason lies in the 
functioning principle of the LLM. LLMs work by predicting 
the probability that a token (usually word) follows a string 
of tokens in a particular context [2]. The weird response is 
thus due to the close resemblance of the input puzzle to the 
old (and more difficult) puzzle of a farmer needing to take a 
wolf, a goat and a cabbage across the river. Since the train-
ing material is enormous– in the case of OpenAI’s GPT-4, 
for example, it is said to be the entire Internet– the LLM 
will include the more difficult puzzle many times. Thus, 

1 Introduction

The importance of artificial intelligence (AI) applica-
tions in the modern world can hardly be overstated. With 
the introduction of deep neural networks and transformer 
architectures, machine learning systems have been success-
ful in many areas where computers were previously of lim-
ited use. A particularly exciting development has been that 
of generative AI, based on large language models (LLM) 
and more recently multi-modal large language models. The 
rise in both quantity and quality of AI-generated content 
includes text-based systems like chatbots and translation 
tools, but also increasingly other media, like images, video 
and audio.

However, for all their success in the aforementioned 
fields, generative AI applications were for a long time 
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detecting the tokens associated with man, goat, boat and 
river, the large language model predicts the next tokens to 
come from that puzzle. When the prompted puzzle is actu-
ally much simpler, the model is not able to detect that, given 
the scarcity of the simple puzzle in the training material. 
This is a good example of how the LLM functions: as a 
probabilistic model, it simply outputs the most likely (or 
one of the most likely) tokens associated with a string of 
tokens. It does not understand or reason in a human-like 
fashion, which is why it can be led astray so easily [3, 4]. 

When it comes to mathematical AI, the LLM-archi-
tectures thus seem inherently problematic. Mathematical 
deduction is not probabilistic. Instead of detecting patterns 
in data, a successful mathematical AI application has to fol-
low rules– corresponding to the axioms and rules of proof in 
formal systems of mathematics. Against this background, it 
is hardly surprising that LLM-based AI systems have found 
relatively little use in mathematics. However, this may 
change when LLM-architectures are combined with rule-
based systems for new types of hybrid systems. In this kind 
of system, the LLM is used to generate potential solutions 
to mathematical problems, which are then tested on a rule-
based system. Such a hybrid approach received a big boost 
in 2024, when Google’s DeepMind reported significant 
success with its AlphaGeometry and AlphaProof applica-
tions in solving problems of the International Mathemati-
cal Olympiad [5, 6]. Combining the Gemini large language 
model and the rule-based theorem prover Lean, the appli-
cations are exactly that kind of hybrid– sometimes called 
neuro-symbolic– AI.

In this paper, I investigate the potential of such AI tools 
in research mathematics, and their ethical consequences. 
While current theorem proving tools used by mathemati-
cians are rule-based systems and as such have limited func-
tionality, it is conceivable that a neuro-symbolic hybrid 
system could provide new proofs, including new mathemat-
ical theorems, autonomously. Such an autonomous auto-
mated theorem prover (AATP) could be transformative to 
mathematical practice. In the extreme case, new mathemati-
cal proofs could be generated simply by entering a system 
of axioms and rules of logic as input to an AATP. In such 
case, the human contribution would be minimal, yet it could 
lead to important achievements in the mathematical com-
munity. But even in less extreme cases, AI tools could be 
used to replace much of what is currently valued in the work 
of human mathematicians. This raises important questions 
about the future of mathematics. In this paper, I present 
epistemological considerations based on such a scenario. 
However, I will ultimately focus on the ethics of using such 
mathematical AI applications.

The paper is structured as follows. In Sect. 2, I present 
a short history of AI applications in theorem proving. In 

Sect. 3, I present scenarios of how this may change, based 
on AI architectures similar to AlphaProof and AlphaGeom-
etry 2. From there, in Sect. 4, I move to the question of AI 
trust in the case of theorem proving applications. Finally, 
in Sect. 5, I examine what kind of ethical guidelines there 
should be for the use of AI tools in theorem proving. As the 
basis for my analysis, I use the guidelines presented for AI 
use in scientific research by Resnik and Hosseini [7]. How-
ever, I argue that the special characteristics of mathematical 
research requires the introduction of mathematics-specific 
instructions and regulations.

2 AI and theorem proving

Considering the reported weaknesses in mathematical tasks 
in celebrated modern-day AI systems like ChatGPT, it is 
noteworthy that in early days of AI research mathemat-
ics was considered to be one of the main success stories.1 
Indeed, one of the very first AI systems could prove math-
ematical theorems. The Logic Theorist by Newell, Simon 
and Shaw [8] proved theorems of Principia Mathematica 
by Whitehead and Russell [9] with remarkable success: of 
the 52 theorems of the second chapter of the book, Logic 
Theorist managed to prove 38, in one case even providing 
a proof that was considered superior to that presented in the 
book [10].

Logic Theorist was a rule-based system, an early applica-
tion of what is now called “good old-fashioned AI”. Such 
systems have proven to be useful tools for mathematicians. 
They function based on following simple rules of logic, 
which make them reliable companions for humans solv-
ing mathematical tasks. The most common usage of such 
tools is for calculations, but they have also found success 
in theorem proving. Famously, computers have been used 
to prove conjectures like the four-color theorem [11] and 
Kepler’s conjecture [12]. These were proofs by exhaus-
tion, also called the “brute-force” method, which refers to 
using the vast computational power of computers to one by 
one verify a finite number of cases. Shortly after Appel and 
Haken presented their proof, philosophers shared doubts 
about the reliability of this kind of methodology. Given that 
we cannot feasibly check the calculations and the computer 
might make errors (either through software bugs or physical 
malfunctions), it was argued that an experimental element 
has entered mathematics, casting doubt on the reliability of 
the computer proof– or indeed, whether it should count as a 

1  Here I will use “artificial intelligence” to refer widely to any com-
puter application designed to process tasks previously thought to 
require (human) intelligence. I acknowledge that the early develop-
ments no longer fit the definition of AI associated (either implicitly or 
explicitly) with much of the modern use of the term.
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proof in a strict sense [13]. Nowadays, however, such wor-
ries are rarely heard. When we know which rules the com-
puter is following, we trust it to do so reliably.

Although their reliability is no longer questioned (at least 
not in the same sense), proofs by exhaustion are somewhat 
frowned upon for their lack of mathematical elegance. In 
mathematics, in addition to proving a theorem, we would 
also like to understand why the theorem is true. Simply 
crunching the numbers case by case does not give us insight 
into that. In addition, proof by exhaustion works only in 
when the cases to be checked are finite when in mathemat-
ics theorems are typically proved for infinite domains.2 
Hence, while proofs by exhaustion provide the most famous 
cases of computer-assisted proofs in mathematics, they are 
not representative of the most common uses of AI tools 
in theorem proving. For that purpose, mathematicians use 
automated theorem provers (ATP) or interactive theorem 
provers (ITP). Famous such software include E, Vampire, 
Lean, and Mizar.3 What these software typically do is take a 
problem as the input, consisting of a set of first-order axioms 
and a conjecture (a first-order formula). Then, standardly 
using first-order logic with equality4, the software checks 
whether the conjecture follows from the axioms [14]. If the 
conjecture holds, it is desirable that the ATP can provide a 
derivation of the theorem from the axioms, or in the case of 
ITP, parts of the derivation to help the human mathemati-
cian. From their functionality, it becomes clear why such 
software are often also called proof assistants: while they 
can be helpful tools for the human mathematicians, they 
do not provide proofs autonomously, making them more 
like pocket calculators than anything resembling intelligent 
applications [15].

Automated and interactive theorem provers are consid-
ered to be uncontroversial tools in mathematical practice, 
as the mathematician is responsible for the work. There is 
nothing unethical in using ATP or ITP software, and one is 
not expected to report their use in published papers, any 
more than one is expected to report, say, the usage of a 
spell-checker in correcting typos. They are simply modern 
tools at the disposal of the mathematicians: some find use 

2  The great achievement in the cases of the four-color theorem and 
Kepler’s conjecture was that the mathematicians were able to reduce 
the infinite domain to a finite number of cases to be checked.

3  Often the same software has both functionalities.
4  First-order logic is an extension of propositional logic that includes 
quantifiers (for all x, there exists x) over non-logical objects. Extended 
with equality (x = y), it is the standard logical system used in axiom-
atic mathematics, although in mathematics, also higher-order logics 
that allow for quantifying also over logical objects (such as predicates 
and functions) are commonly used.

for them while others do it never, but there is nothing con-
troversial involved.5

However, this lack of controversy may well be due only 
to the limited functioning of the present-day software. 
Since even for the most software-savvy mathematician, the 
important mathematical content has to be generated by the 
human, the proof assistants are considered acceptable tools. 
But what if the functionality of the automated theorem prov-
ers would be expanded? What if they could prove theorems 
essentially autonomously? In the case of such autonomous 
automated theorem provers (AATP), serious questions con-
cerning research ethics could arise. What if an AATP pro-
vided a proof of a new theorem autonomously?

For a long time, such AATP applications did not seem 
like a realistic prospect. Strictly speaking, of course, a clas-
sical ATP can be used to prove new theorems. By enter-
ing a system of axioms and rules of proof, we can simply 
have the ATP generate theorems of the system. The prob-
lem, however, is to limit this output to theorems and proofs 
that are significant to human mathematicians. While some 
progress has been made in terms of, for example, length of 
proofs [16–18], such measures do not help us distinguish 
between important and trivial theorems. In the philosophy 
of mathematical practice, explaining what makes some 
theorems more interesting than others has been a central 
issue. Trivial theorems, like those of the form “A if and only 
if A” (where A is any formula), are clearly different from 
celebrated mathematical achievements like Fermat’s Last 
Theorem. But can we find general criteria for what should 
count as a mathematically interesting theorem? Suggested 
criteria for interesting mathematics have included insight-
fulness [19, 20] and beauty [21, 22], but such notions remain 
vague and as such impossible to formalise for applications 
in automated theorem provers (for a more detailed analysis, 
see [15]).

In this regard, however, the limitations only apply to 
rule-based systems. In [15], I have analysed how the matter 
could potentially change if we had machine-learning-based 
theorem provers applied for theorem proving. Importantly, 
such applications could detect patterns of what makes the-
orems humanly interesting without the patterns being fed 
explicitly as input. This kind of approach can give rise to a 
dual processing of theorems: a deep neural network being 
used to detect patterns and predict proof sequences, and a 
traditional rule-based theorem proving then used to test the 
proofs. When I submitted that paper, these types of neural 
theorem provers (NTP) were starting to be discussed among 
computer scientists [23–25] but they had not received much 

5  From personal communication with mathematicians, I have gotten 
the impression that the use of proof assistants is actually quite rare 
among research mathematicians. However, to the best of my knowl-
edge, no reliable up-to-date data on this matter is available.
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systems is that the large language model part can generate 
more relevant solution candidates, and do it more efficiently. 
The advantage over pure neural network architectures is 
that the outputs can be tested for deductive correctness by 
the rule-based part.

The idea of neuro-symbolic AI is not new, it was sup-
ported prominently by Marcus in his book The Algebraic 
Mind [27]. It mirrors Kahneman’s [28] dual “fast and slow” 
system theory of the mind, in which one system is respon-
sible for “fast”, unconscious and intuitive thinking while 
another system is responsible for “slow”, conscious and 
deliberate thinking. This connection is explicitly mentioned 
by DeepMind in presenting AlphaGeometry:

AlphaGeometry is a neuro-symbolic system made up 
of a neural language model and a symbolic deduction 
engine, which work together to find proofs for com-
plex geometry theorems. Akin to the idea of “thinking, 
fast and slow”, one system provides fast, “intuitive” 
ideas, and the other, more deliberate, rational deci-
sion-making [5]. 

The working principle is thus that the large language model, 
being able to detect patterns in the training data, can pre-
dict successful constructs in a “fast” manner, which are then 
processed by the symbolic-deductive engine in a “slow” 
manner. Essentially, the large language models associated 
with AlphaProof and AlphaGeometry are applied to find 
potential solutions to problems, which are then tested by 
the symbolic-deductive system.6The performance of Alp-
haProof and AlphaGeometry has been impressive. In Janu-
ary 2024, it was reported that the original AlphaGeometry 
solved 25 out of the 30 geometry problems in the Interna-
tional Mathematical Olympiad (IMO), which is very close 
to the gold-medallist performance (25.9 on average) [5]. In 
July 2024, Alphaproof and AlphaGeometry 2 were reported 
to score 28 out of 42 points in the general IMO test. This is 
again very close to the gold-medallist performance level of 
30 points [6].7

6  In this, the functionality of AlphaProof and AlphaGeometry 2 
differs from that of OpenAI o1, another AI application published 
in 2024 with reported success in solving mathematical tasks [29]. 
While o1, a development of the GPT-4o large language model, also 
uses reinforcement learning, it does not apply a rule-based system to 
check the results. OpenAI reports o1 as performing “complex reason-
ing” by using its “chains of thought– even going as far as declaring 
that it “thinks before it answers” [29]– but given that the answers are 
not tested on a rule-based system like in the case AlphaProof and 
AlphaGeometry 2, there is reason to doubt that the “reasoning” is 
robust in the sense that it can be relied upon generally. As of writing 
this, their success has not yet been properly tested. See [4] for more.

7  It should be noted that while AlphaGeometry solved the prob-
lems within the time limit, the AlphaProof and AlphaGeometry 2 

wider attention. This changed dramatically in July 2024 
when Google’s DeepMind published its results on their 
mathematical AI applications AlphaProof and AlphaGe-
ometry2. These applications were reported to achieve new 
levels of artificial mathematical reasoning. Since they are 
likely to become standard applications to refer to in discus-
sions concerning mathematical AI, I will focus on them in 
what follows.

3 AlphaProof, AlphaGeometry 2, and the 
future of theorem proving AI

Google’s DeepMind announced the AI model AlphaGeom-
etry and its success in solving problems of the International 
Mathematical Olympiad (IMO) in January 2024 [5]. In July 
that year, it announced the model AlphaProof and a new 
version of their geometry model, AlphaGeometry 2. Also 
in that case, success in the IMO was reported [6]. While 
the AlphaGeometry models are restricted to geometrical 
problems, AlphaProof can solve problems also in other 
fields of mathematics. Since their training and functioning 
is very similar, I will focus here on DeepMind’s report on 
AlphaProof.

AlphaProof is a machine learning system that is trained 
to prove mathematical statements in the programming lan-
guage of the proof assistant Lean. Its functioning is based 
on a pre-trained large language model and the application 
of DeepMind’s AlphaZero reinforcement learning algorithm 
(the same algorithm that famously reached very high levels 
in games like chess and go). A key feature of AlphaProof is 
that a Gemini large language model is fine-tuned to translate 
natural language statements in the training data into formal 
statements processable in Lean. In this way, the model was 
able to take roughly million informal mathematics prob-
lems and turn that into a database of 100 million formal 
problems. When presented with a problem, AlphaZero then 
uses this database to generate solution candidates, which 
are consequently processed in Lean as proof steps. Every 
successful proof step is then used to reinforce AlphaProof’s 
large language model, improving its capacity to solve future 
problems [6].

It is important to note that AlphaProof is thus a hybrid 
of two approaches to AI. First, the Gemini large language 
model is trained with a deep neural network transformer 
architecture, which is the standard way modern machine 
learning systems work. Second, the solution candidates are 
processed in the rule-based, symbolic programming lan-
guage of Lean. This kind of hybrid approach is sometimes 
called neuro-symbolic AI because it combines neural net-
work architectures with symbolic, rule-based systems [26]. 
The advantage that neuro-symbolic AI has over rule-based 

1 3



AI and Ethics

their success does give reason for optimism that it could be 
achieved. The training dataset generation could, for exam-
ple, be based on applying a metric of “closeness” to proofs 
and theorems found in mathematical literature. That way, 
the dataset could remain sufficiently connected to actual 
human mathematics, thus potentially allowing the detection 
of interesting patterns. With such a development, a neuro-
symbolic system could then become an autonomous auto-
mated theorem prover: we would simply need to present it 
with a system of axioms and rules of logic, and the system 
could generate humanly interesting mathematical theorems 
and their proofs. Instead of traditional proof assistants, such 
an application would be a proper AATP in the sense that 
human interaction with it would only concern the input and 
the output.

Training the large language model to identify patterns of 
interesting mathematical content is a problem particularly 
in the fourth category, proving completely new theorems. 
An important part of mathematical practice is moving math-
ematics forward to interesting new directions. By proving 
new proofs, or parts of proofs, an AI system could certainly 
contribute in important ways to that. But to be comparable to 
human mathematicians more widely, an AATP would need 
to possess the capacity to identify entirely new problems 
in mathematics, ones that human mathematicians would 
ultimately agree on as being interesting. In terms of having 
enough training material to train the AI system, this aspect 
may be particularly difficult. Whereas patterns in the steps 
of humanly produced mathematical proofs may be easier to 
detect, it is not clear that classes of interesting mathematical 
problems– from a research mathematician’s perspective– 
contain similar patterns. Given that the entire corpus of 
interesting problems in mathematical literature is nowhere 
near the kind of scale that is typically needed to train large 
language models– in the case of AlphaProof, for example, 
a million natural language problems were used to generate 
the formal dataset– it is far from trivial that a sufficiently 
large dataset for pre-training the model can be created. This 
is not to suggest, however, that progress could not be made. 
With the help of criteria for similarity of problems, datasets 
could be developed that gradually become more useful for 
detecting patterns in what kind of mathematics is consid-
ered interesting.

To sum up, it is far from obvious that the AlphaProof/
AlphaGeometry 2 approach can be scaled up to top-level 
research mathematics. However, it is at least plausible that 
success could be achieved also in that pursuit. A hybrid, 
neuro-symbolic, AI system could feasibly be developed 
based on the presently applied architectures that manages to 
prove interesting new theorems. Importantly, this could be 
done by an AATP that receives as the prompt only the task 
of finding a new theorem in a set of axioms (and rules of 

While at present these AI systems have been used to 
solve problems presented as parts of competitions, it is fea-
sible that they can also be used to solve problems in actual 
research mathematics. This potential use can be divided into 
four categories:

1. They can be used to fill in elementary or trivial parts of 
the proof, similarly to how ChatGPT is used by coders 
currently.

2. They can be used to find completely new proofs for 
known theorems. Some theorems, like the Four-color 
theorem, currently have proofs that many mathemati-
cians consider inelegant or otherwise sub-optimal. The 
AI systems could find more satisfactory proofs.

3. They could be used to prove conjectures. Unproven 
conjectures, like Goldbach’s conjecture, could be fed as 
the input to the system, with the task of finding a proof 
for it from a given system of axioms.

4. They could be used to prove completely new theorems, 
once that were not previously conjectures in the litera-
ture. In this scenario, the AI system generates a com-
pletely new theorem and a proof for it. All four aspects 
would replace something that is currently the domain of 
human mathematicians. However, the first one differs 
in an important way from the other three. Namely, the 
first use is something that is already possible (to some 
degree) with the current generation of automated theo-
rem provers. The other three uses, as explained in the 
previous section, are not feasible with the current rule-
based systems. For that reason, I will focus on them for 
the rest of this paper.

The first thing to note is that none of the last three features 
may be easy to achieve in practice. The success of AlphaP-
roof, for example, is tightly connected to the developers 
being able to create the training dataset of 100 million for-
mal problems. In the case of research mathematics, creating 
a comparably large training dataset provides a much more 
serious challenge. There do not exist millions of theorems 
and proofs, so the developers of a large language model for 
theorem proving would need to find a way to generate the 
dataset. This “scaling-up” is potentially problematic when 
we consider the requirement that the theorems should some-
how be humanly interesting: after all, the generation process 
would essentially be about generating large sets of humanly 
interesting theorems that have not been considered humanly 
interesting [15].

Nevertheless, while the prospect of training a theorem 
proving AI with similar functioning to AlphaProof and 
AlphaGeometry 2 is undoubtedly a more difficult task, 

combination sometimes took days to solve the problems, which is 
way above the 4.5 h that the human participants have [6].

1 3



AI and Ethics

or legal AI. But they are also relevant in the field of math-
ematical AI, including theorem-proving. Due to mathemati-
cal applications in technology, for example, the body of 
accepted mathematical knowledge has significance beyond 
the world of research mathematics. Hence, it is important 
that also mathematical AI is developed in a responsible way 
to ensure that we can trust in the applications.

Alvarado [34] has argued that AI tools are first and fore-
most epistemic technologies, i.e., they are designed and 
deployed for the particular purpose of expanding our capac-
ities for knowing. Consequently, he has argued that trust in 
AI should be understood as epistemic trust and cannot be 
modelled after other forms of trust in technology, such as 
pharmaceuticals [31]. Here I apply Alvarado’s approach for 
developing AI tools for mathematical research. If we trust a 
mathematical AI system, we trust it primarily as a tool for 
acquiring mathematical knowledge. Applications using this 
knowledge may be used for scientific purposes that neces-
sitate wider ethical considerations concerning trust, but for 
present purposes I will limit my considerations to develop-
ing mathematical AI that we can trust as a reliable source of 
mathematical knowledge.

As mentioned in Sect. 1, trust in computer proofs was an 
important issue in the philosophy of mathematics when the 
first computer-assisted proofs emerged [11, 13]. The con-
cerns included, among other things, the possibility of mal-
functioning computers and the inability to detect that. From 
a modern perspective, such concerns may seem somewhat 
odd. The possibility of bugs and hardware malfunctions 
has of course not disappeared, but what has changed is the 
understanding of human reliability in mathematics.8 Nowa-
days, the idea that humans checking vast calculations could 
somehow be more reliable than a computer is likely to find 
little support.

Nevertheless, trust in mathematical AI is an important 
topic to consider. Instead of questioning the reliability of 
rule-based systems, however, the main concern should 
be trust in machine learning systems. AlphaProof and 
AlphaGeometry 2 are both based on large language models 
and as such they potentially suffer from all the reliability 
problems associated with LLMs. This includes ”hallucina-
tions”, i.e., the AI system generating incorrect outputs.9 But 
perhaps the most commonly identified issue regarding trust 
in LLMs is the “black box” problem [37]. Even when deep 
neural network systems (like LLMs) are highly predictive, 
we rarely have a clear idea why they are so (see, e.g., Kay 
[38]). Already due to the sheer complexity of the model, it 
is impossible to trace the algorithms that the system uses to 

8  This is a topic in the philosophy of mathematical practice, for intro-
duction see [35].

9  “Hallucination,” although the standard industry term, is a bad meta-
phor for this phenomenon: see [36].

logic). In the final stage of the process, a generative AI tool 
could even write a mathematical paper based on the proof. 
For a long time, this step– producing a natural language 
article presenting the proof– would probably have been 
considered one of the most difficult, if not the most difficult 
obstacle. However, with generative AI applications based 
on large language models, this problem is already to large 
extent solved. ChatGPT, for example, has already been used 
to generate entire scientific papers [30]. While such papers 
are unlikely to have interesting scientific content, they are 
largely indistinguishable from humanly produced research 
articles when it comes to linguistic and structural aspects.

Therefore, as detailed above, the key question concern-
ing the use of autonomous automated theorem provers is 
whether they can provide interesting mathematical con-
tent. AI tools can already be used in writing mathematical 
papers, as well as in checking the validity of mathematical 
proofs. In the scenario that I have presented in this paper, 
however, an AATP would take the role of computers in 
mathematics to a new level. If this scenario becomes actu-
alised, it will be transformative to mathematical practice. 
At that point, mathematicians will have access to computer 
tools that can potentially do much of what we have used 
to consider the exclusive domain of humans. In moderate 
applications, these tools can be used like ITP and ATP tools 
currently: they can be used to assist the human mathemati-
cian in producing and checking proofs. In the most extreme 
case, however, these tools can be used to essentially bypass 
the work previously demanding human mathematicians. 
An AATP could potentially generate a proof of an original 
theorem and present it as a scientific research article. In this 
latter scenario, we must ask (at least) two questions, often 
noted in the general literature of using AI tools in scientific 
research. First, can we trust the AI tools [31]? Second, what 
is ethical use of the AI tools [7]? In the next two sections, I 
will focus on these issues, respectively.

4 Trust in mathematical AI

In the philosophical discussions on artificial intelligence, 
trust in AI has been a key issue whether the topic is the reli-
ability of AI technologies or their ethical use (see, e.g [32, 
33]). When introducing new AI technologies, we are under-
standably concerned about their trustworthiness, along 
many dimensions. Can we trust the technology to function 
as described by its developers? Can we trust the users to 
apply the technology in appropriate ways? What safety pro-
cedures are in place in case these expectations are violated? 
Where does the responsibility lie in such cases? Questions 
of this type are crucial in AI applications in high-responsi-
bility areas like self-driving cars, medical AI technologies, 
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mathematicians.11 However, there is no reason to think that 
this problem is essentially different for human-generated 
and AI-generated proofs. Indeed, there is possibility that 
AI-generated proofs could become easier to check through 
automated procedures. A widespread use of some neuro-
symbolic theorem prover application would also mean that 
the proofs would become more commensurable, applying 
the same programming language (like Lean in the case of 
AlphaProof). This can assist in developing tools for proof 
checking.

To sum up, in terms of AI trust, mathematics– or at least 
theorem proving– seems to be a special case. The practices 
of the mathematical community for assessing the reliabil-
ity of mathematical content can generally be applied also 
for content generated by AI systems, including AATPs. 
This is not to say that adjustments would not need to be 
made. It remains to be seen what the AI-generated proofs 
would be like, but it is possible that they are generally lon-
ger than human-generated proofs. In this case, using human 
checking like in the present peer-review system may be 
more problematic in the case of AI-generated proofs. On 
the other hand, AI-generated proofs may be more suitable 
for automated proof checking, which can potentially make 
them more trustworthy than human-generated and human-
checked mathematical proofs.

5 Ethics of using theorem proving AI

Issues of trust regards AI systems are closely connected to 
ethical issues like accountability and responsible use [43]. 
While mathematical AI has not received much attention in 
the philosophical literature, the use of AI tools in scientific 
research in general has been widely discussed in recent 
years [7]. The consensus among researchers seems to be 
that AI tools are becoming an increasingly important part 
of scientific practice, whether as tools in education, assist-
ing in research, or in scientific publishing. In all areas, there 
are multiple uses for AI tools. In scientific publishing, for 
example, AI tools can be used in various ways in the writ-
ing process, but also in the review and publication process. 
As the use of such tools becomes more prevalent, they are 
likely to change the entire publication process, perhaps to 
the level of disrupting it fundamentally [44].

The area of applying AI tools in scientific research 
that has been most comprehensively dealt with in present 
guidelines is using them in writing and editing articles. 
As reported in [7], documents like the European Code of 

11  A famous example of this is the proposed proof of the abc con-
jecture by Shinichi Mochizuki, which was so long and impenetrable 
that to this day it has remained in a kind of limbo of neither being 
confirmed or disproven (see, e.g., Ball [42]).

come up with a particular output. In AI research, this prob-
lem is well-known and it has given birth to the research field 
of explainable AI (XAI), which aims to find ways of making 
the processing of AI systems more transparent [39–41].

So far, XAI approaches have had limited success. The 
black box problem remains as important as ever, and any 
application using deep neural network architecture is 
vulnerable to it. This is also the case for AlphaProof and 
AlphaGeometry 2. It is not feasible to trace how the large 
language model is applied to get particular suggestions for 
proof steps. Neither is it feasible to trace how the reinforce-
ment procedure changes the model. In this sense, both appli-
cations are as vulnerable to the black box problem as any 
deep-learning-based AI systems. However, in terms of the 
philosophical question of AI trust, there is an important dif-
ference to most other generative AI systems. A user of Chat-
GPT, for example, will receive a response to their prompt 
and needs to assess the reliability to the response. The 
response itself, however, may give relatively little informa-
tion to help that assessment (in terms of sources, etc.). This 
is different with mathematical problem-solving applications 
like AlphaProof and AlphaGeometry 2. Instead of simply 
giving the correct solution as the output, they are trained 
to also provide the deductive steps that lead to the solution. 
Therein lies the strength of the neuro-symbolic systems: 
while the black box problem is no less serious in the large 
language model part of the system, the rule-based part of 
the hybrid system checks that the deductive steps are valid. 
Consequently, the hybrid system can give an explanation for 
the solution.10

Granted, the explanation is not the kind of solution that 
XAI approaches are looking for in making AI explanations 
more transparent. However, in terms of AI trust in math-
ematics, this may not be a particularly serious issue. After 
all, in mathematical practice proofs are meant to be assessed 
based on their logical validity, not the thought process that 
led to them. Indeed, currently we know very little about the 
cognitive processes involved in research mathematics, yet 
few would consider this a problem. For this reason, I sub-
mit, the black box problem with regard to AI trust is not 
as damaging in the present scenario– i.e., neuro-symbolic 
theorem provers– as it is generally in generative AI. In the 
case of theorem-proving AI, we can– indeed, must– assess 
the reliability of the system based on the output, i.e., the 
deductive proof sequence. Assessing the reliability of a 
proof is of course not a trivial problem in mathematics. 
Automated proof checking is still limited, and proofs may 
be extremely long and resist successful checking by human 

10  This does not imply that the system is generally reliable in provid-
ing solutions, however, as the initial premises that the LLM generates 
may be incorrect and fail to provide possible solutions that can be vali-
dated by the rule-based system.
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errors, is also widely recognised. No method of data collect-
ing is immune to errors, but in some medical applications, 
for example, AI machine learning methods have been asso-
ciated with unusual amount of random errors [50].

How does Guideline (1) relate to theorem proving AI? In 
the kind of neuro-symbolic hybrid architecture that we focus 
on in this paper, the problem applies to the machine learn-
ing side, i.e., the pre-training of the large language model. 
Certainly, the datasets used for training the model can con-
tain bias. This bias can be based on many visible factors: 
language, geography, publication status, etc. But inherent 
in the dataset of mathematical proofs can also be hidden 
biases based on gender, ethnicity, and other factors. In case 
of mathematical proofs, the bias may not be as prominent or 
damaging as in the medicinal or legal fields. However, also 
in mathematics there can be important bias, for example, 
in terms of problem selection or geographical representa-
tion. Therefore, also as a mathematical guideline, the choice 
of training data should be made transparent, and any biases 
should be minimised. The same goes for random errors, 
which are generally likely to be a lesser problem in the field 
of mathematics, due to the nature of the dataset. Mathemati-
cal proofs may carry errors and gaps that cause errors in 
the output, but these are unlikely to be as common as in 
areas involving more error-prone procedures like image 
processing. More importantly, the hybrid nature of the AI 
applications discussed in this paper enable error detection 
and quality improvement in the reinforcement stage of the 
training procedure. However, there are limits to this, as the 
training data may not be of adequate quality to initially pro-
vide possible solutions. Therefore, the hybrid systems are 
not immune to errors, so as a guideline it is important to 
minimise errors also in the case of theorem proving AI.

Guideline (2) calls for explaining how AI was used in 
the research in an open fashion, in language understandable 
to non-specialists. This is clearly something that should 
be applied in the field of mathematics, as well. Indeed, I 
submit that this guideline should have been introduced to 
mathematical research already. At present, it is not required 
to disclose the use of AI tools for checking proofs, or even 
generating parts of proofs. This is the case, for example, with 
the guidelines published by the American Institute of Math-
ematical Sciences [51].12 While the use of generative AI, 
such as ChatGPT, is required to be mentioned under those 
guidelines, they do not mention anything about using AI 
tools for checking mathematical content. This may become 
problematic as the line between using AI tools for checking 
proofs and generating new content can become blurred. It 
would be better for transparency to require disclosing the 

12  There generative AI is distinguished from “assistive AI” (such as 
spelling checker functionality in Microsoft Office), whose use is not 
required to be reported.

Conduct for Research Integrity [45] and National Institutes 
of Health Guidelines [46] provide guidelines for using AI 
tools in writing and editing articles. As mentioned above, 
this is a relevant issue also for good practice in mathemati-
cal research. Hence, ethical guidelines specific to math-
ematics should be presented by publishers of journals and 
books. However, writing and editing articles is only a small 
part of mathematical and generally scientific research. Con-
sequently, many have argued for introducing clear guide-
lines for the use of AI in scientific research and publishing 
[7, 47].

I agree with this approach when it comes to introduc-
ing new theorem proving AI tools in mathematical research. 
As the starting point of my analysis of how mathematical 
research in particular should be understood in this respect, 
I will use the following list of six guidelines presented by 
Resnik and Hosseini [7]:

1. Researchers are responsible for identifying, describing, 
reducing, and controlling AI-related biases and random 
errors.

2. Researchers should disclose, describe, and explain their 
use of AI in research, including its limitations, in lan-
guage that can be understood by non-experts.

3. Researchers should engage with impacted communi-
ties, populations, and other stakeholders concerning the 
use of AI in research to obtain their advice and assis-
tance and address their interests and concerns, such as 
issues related to bias.

4. Researchers who use synthetic data should (a) indicate 
which parts of the data are synthetic; (b) clearly label 
the synthetic data; (c) describe how the data were gener-
ated; and (d) explain how and why the data were used.

5. AI systems should not be named as authors, inventors, 
or copyright holders but their contributions to research 
should be disclosed and described.

6. Education and mentoring in responsible conduct of 
research should include discussion of ethical use of 
AI.How should these guidelines be applied in the spe-
cial case of mathematical research? Here I will evaluate 
each specifically for mathematics.

Guideline (1) is based on a well-known general problem of 
machine learning methodology. If the training data carries 
biases, these are likely to be present, or even amplified, in 
the outputs of the AI system. This problem has been dis-
cussed widely in the case of medical AI applications [48]. 
The training data may not represent the entire population, 
thus making subgroups– often disadvantaged populations– 
vulnerable for biased AI-based decisions. Similar concerns 
have been discussed in legal AI [49], among other fields. 
The other problem mentioned in the guideline, random 
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words should be “an AI-generated theorem and proof”. For 
the first type, the matter depends on the extent of AI use. If 
the use is not central, it would be enough to acknowledge 
this in the article. But for more extensive use of AI tools, 
the title should contain the words “an AI-assisted proof”. 
The specifics of what counts as extensive use need to be 
determined by mathematicians.

The Guideline (6) is directly applicable to research math-
ematics. The ethical use of AI, including guidelines like the 
ones presented here, need to be part of mathematical educa-
tion and mentoring in universities.

Equally important as setting guidelines for the proper use 
of generative AI tools in mathematical research is to agree 
on protocols for cases in which those guidelines are bro-
ken. This topic is divided into two. First, there is the ques-
tion of detecting misuse. Second, there is the question of 
determining the consequences for misuse. Both issues are 
very difficult. The need for reliable tools for detecting AI-
generated text was recognised quickly after chatbots like 
ChatGPT were launched (see, e.g [52]), yet relatively little 
has been achieved in the field. Tools have been developed 
and AI-detection is likely to become increasingly big busi-
ness, but in terms of detecting AI-generated content with 
sufficient reliability to impose consequences on authors, 
important problems remain.13 This may become particularly 
problematic in mathematics where, due to the abundance 
of formal content, detecting AI-generated content can be 
even more difficult. To make things more difficult, we can 
expect improvement also in AI tools for making text more 
human-like. This also makes determining the consequences 
difficult, as potentially career- and life-changing sanctions 
would need to be imposed based on insufficient evidence. 
Due to such fundamental problems, policies for detection 
and disciplinary actions may be very hard to introduce in 
practice. This further underscores the importance of agree-
ing on ethical guidelines in a timely fashion: establishing 
fair and ethical research practices for AI tools can help deal 
with potential misuse when their application becomes more 
widespread.

6 Conclusion

In this paper, I have argued that, just like the use of AI 
tools in scientific research in general, the use of AI tools 
in mathematical research requires ethical guidelines. Due to 

13  To give one example, OpenAI’s tool for detecting AI-generated 
text was reported in January 2023 to identify correctly only 26% of 
AI-generated text (true positives) as being “likely AI-written” while it 
incorrectly labels human-written text as AI-generated 9% of the time 
(false positives) [53]. It should clear that such a low rate of true posi-
tives and high rate of false positives prevents any reliable use of the 
tool.

use of AI tools in any stage of processing the mathemati-
cal content. In addition, using AI tools for generating text 
should always be disclosed, and any AI-generated content 
should be carefully checked.

The main problem with Guideline (3) is the difficulty of 
determining what communities, populations, or stakehold-
ers are impacted by mathematical AI research. Given the 
wide range of applications of mathematics in science, but 
also wider in society, an argument could be made that the 
impact of mathematics reaches almost everywhere. Even if 
we limit ourselves to, say, educational contexts, the scope 
remains unrealistically wide for proper engagement. Thus, 
I suggest that the suitable scope for engagement is that of 
research mathematicians. With this limitation, this guide-
line can be directly applied to theorem proving AI. Research 
using such tools should engage with the research mathema-
tician community to disclose and discuss the impact and 
potential problems.

With regard to Guideline (4), we can replace “synthetic 
data” with “AI-generated proofs”. These may involve AI use 
of any of the four types disclosed in Sect. 3, but in each case, 
it should be disclosed what type of AI-generated content was 
produced. In the first case, for example, the parts proven by 
the AI should be clearly marked in the proof. In the second 
and third cases, it should be openly disclosed that the proof 
was generated by an AI system. Finally, in the fourth case, 
it should be transparent that also the proven conjecture was 
generated by an AI system. The AI application(s) in ques-
tion should be identified and their most important charac-
teristics explained. In addition, the reason for using them 
should be made clear, as well as the researchers’ role in the 
process.

The Guideline (5) is often included in guidelines for AI 
use (see, e.g [51]). The motivation for it is that the human 
authors should retain the entire responsibility for the pub-
lished research. In the case of AATPs, this may ultimately 
become the main role of the human author. If an AATP can 
autonomously generate a proof of a new theorem and pro-
duce a scientific paper presenting it, what role remains for 
humans in the process? In order to retain human account-
ability for published research findings, even in cases of 
minimal human contribution, human authorship is required. 
Aside from being accountable for the publication, the role 
of the author would also be to explain aspects of the publica-
tion when needed.

The Guideline (5) calls for the AI contributions to be 
“disclosed and described”. I agree with this, but I believe 
that we should set clear guidelines for maximally visible 
acknowledgments of AI-generated proofs. For this, in the 
second and third types of AI use presented in Sect. 3, my 
suggestion is that the title of the paper should include the 
words “an AI-generated proof”. For the fourth type, the 
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ethical use of such mathematical applications– and hope-
fully also detection tools– should be established quickly.
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